Ali R Rezai, Manish Ranjan, Pierre-François D'Haese, Marc W Haut , Jeffrey Carpenter , Umer Najib, Rashi I Mehta, J Levi Chazen, Zion Zibly, Jennifer R Yates, Sally L Hodder, Michael Kaplitt
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9180-9182. doi: 10.1073/pnas.2002571117. Epub 2020 Apr 13. https://pubmed.ncbi.nlm.nih.gov/32284421/
ABSTRACT
The blood-brain barrier (BBB) presents a significant challenge for treating brain disorders. The hippocampus is a key target for novel therapeutics, playing an important role in Alzheimer's disease (AD), epilepsy, and depression. Preclinical studies have shown that magnetic resonance (MR)-guided low-intensity focused ultrasound (FUS) can reversibly open the BBB and facilitate delivery of targeted brain therapeutics. We report initial clinical trial results evaluating the safety, feasibility, and reversibility of BBB opening with FUS treatment of the hippocampus and entorhinal cortex (EC) in patients with early AD. Six subjects tolerated a total of 17 FUS treatments with no adverse events and neither cognitive nor neurological worsening. Post-FUS contrast MRI revealed immediate and sizable hippocampal parenchymal enhancement indicating BBB opening, followed by BBB closure within 24 h. The average opening was 95% of the targeted FUS volume, which corresponds to 29% of the overall hippocampus volume. We demonstrate that FUS can safely, noninvasively, transiently, reproducibly, and focally mediate BBB opening in the hippocampus/EC in humans. This provides a unique translational opportunity to investigate therapeutic delivery in AD and other conditions.
Marie Violet, Lucie Delattre, Meryem Tardivel, Audrey Sultan, Alban Chauderlier, Raphaelle Caillierez, Smail Talahari, Fabrice Nesslany, Bruno Lefebvre, Eliette Bonnefoy, Luc Buée, Marie-Christine
Frontiers in Cellular Neuroscience 2014 Mar 18;8:84. doi: 10.3389/fncel.2014.00084. eCollection 2014.https://pubmed.ncbi.nlm.nih.gov/24672431/
ABSTRACT:
Nucleic acid protection is a substantial challenge for neurons, which are continuously exposed to oxidative stress in the brain. Neurons require powerful mechanisms to protect DNA and RNA integrity and ensure their functionality and longevity. Beside its well-known role in microtubule dynamics, we recently discovered that Tau is also a key nuclear player in the protection of neuronal genomic DNA integrity under reactive oxygen species (ROS)-inducing heat stress (HS) conditions in primary neuronal cultures. In this report, we analyzed the capacity of Tau to protect neuronal DNA integrity in vivo in adult mice under physiological and HS conditions. We designed an in vivo mouse model of hyperthermia/HS to induce a transient increase in ROS production in the brain. Comet and Terminal deoxyribonucleotidyltransferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assays demonstrated that Tau protected genomic DNA in adult cortical and hippocampal neurons in vivo under physiological conditions in wild-type (WT) and Tau-deficient (KO-Tau) mice. HS increased DNA breaks in KO-Tau neurons. Notably, KO-Tau hippocampal neurons in the CA1 subfield restored DNA integrity after HS more weakly than the dentate gyrus (DG) neurons. The formation of phosphorylated histone H2AX foci, a double-strand break marker, was observed in KO-Tau neurons only after HS, indicating that Tau deletion did not trigger similar DNA damage under physiological or HS conditions. Moreover, genomic DNA and cytoplasmic and nuclear RNA integrity were altered under HS in hippocampal neurons exhibiting Tau deficiency, which suggests that Tau also modulates RNA metabolism. Our results suggest that Tau alterations lead to a loss of its nucleic acid safeguarding functions and participate in the accumulation of DNA and RNA oxidative damage observed in the Alzheimer's disease (AD) brain.
Hao Wang, Meng-Shan Tan, Rui-Chun Lu, Jin-Tai Yu, and Lan Tan
BioMed Research International Volume 2014, Article ID 239164, pubmed.ncbi.nlm.nih.gov/25147790/
ABSTRACT:
Heat shock proteins 70 and heat shock proteins 90 (Hsp70/90) have been implicated in many crucial steps of carcinogenesis: stabilizing oncogenic proteins, inhibiting programmed cell death and replicative senescence, induction of tumor angiogenesis, and activation of the invasion and metastasis. Plenty of cancer related proteins have the ability of regulating the expression of Hsp70/90 through heat shock factor 1. Cancer and Alzheimer's disease (AD) have plenty of overlapping regions in molecular genetics and cell biology associated with Hsp70/90. The Hsp70, as a protein stabilizer, has a cellular protection against neurodegeneration of the central nervous system, while Hsp90 promote neurodegenerative disorders indirectly through regulating the expression of Hsp70 and other chaperones. All these make existing anticancer drugs target Hsp70/90 which might be used in AD therapy.
mage should be considered.
Zwirner K, Rui-Chun Lu, Meng-Shan Tan, Hao Wang, An-Mu Xie, Jin-Tai Yu, and Lan Tan
BioMed Research International, Volume 2014, Article ID 435203, 8 pages http://dx.doi.org/10.1155/2014/435203.
ABSTRACT:
Alzheimer’s disease (AD) is the most common neurodegenerative disease that caused dementia which has no effective treatment. Growing evidence has demonstrated that AD is a “protein misfolding disorder” that exhibits common features of misfolded, aggregation-prone proteins and selective cell loss in the mature nervous system. Heat shock protein 70 (HSP70) attracts extensive attention worldwide, because it plays a crucial role in preventing protein misfolding and inhibiting aggregation and represents a class of proteins potentially involved in AD pathogenesis. Numerous studies have indicated that HSP70 could suppress the progression of AD with in vitro and in vivo experiments. Thus, targeting HSP70 and the related compounds might represent a promising strategy for the treatment of AD.
Jiang-Rong Ou, Meng-Shan Tan, An-Mu Xie, Jin-Tai Yu, and Lan Tan, BioMed Research International Volume 2014, Article ID 796869, 7 pages
http://dx.doi.org/10.1155/2014/796869
ABSTRACT:
Alzheimer’s disease (AD) is the first most common neurodegenerative disease. Despite a large amount of research, the pathogenetic mechanism of AD has not yet been clarified. The two hallmarks of the pathology of AD are the extracellular senile plaques (SPs) of aggregated amyloid-beta (Aβ) peptide and the accumulation of the intracellular microtubule-associated protein tau into fibrillar aggregates. Heat shock proteins (HSPs) play a key role in preventing protein misfolding and aggregation, and Hsp90 can be viewed as a ubiquitous molecular chaperone potentially involved in AD pathogenesis. A role of Hsp90 regulates the activity of the transcription factor heat shock factor-1 (HSF-1), the master regulator of the heat shock response. In AD, Hsp90 inhibitors may redirect neuronal aggregate formation, and protect against protein toxicity by activation of HSF-1 and the subsequent induction of heat shock proteins, such as Hsp70. Therefore, we review here to further discuss the recent advances and challenges in targeting Hsp90 for AD therapy.Heat shock proteins (HSP) are a group of proteins that impressed by heat shock, the subgroup of these proteins are related proteins functionally take part in the folding and unfolding of other proteins. Their expression is increased in high temperatures or other stress that cells are exposed. The upregulation of the heat shock proteins is important to the heat shock response and is induced by heat shock factor (HSF). Heat shock proteins are named by their molecular weight. For example, HSP60 has 60 kilodaltons (kd) molecular weight
Yarmolenko PS, Moon EJ, Landon C, Manzoor A, Hochman DW, Viglianti BL, Dewhirst MW. Int J Hyperthermia. 2011;27(4):320-43. doi: 10.3109/02656736.2010.534527.https://www.ncbi.nlm.nih.gov/pubmed/21591897
ABSTRACT:
The purpose of this review is to summarise a literature survey on thermal thresholds for tissue damage. This review covers published literature for the consecutive years from 2002-2009. The first review on this subject was published in 2003. It included an extensive discussion of how to use thermal dosimetric principles to normalise all time-temperature data histories to a common format. This review utilises those same principles to address sensitivity of a variety of tissues, but with particular emphasis on brain and testis. The review includes new data on tissues that were not included in the original review. Several important observations have come from this review. First, a large proportion of the papers examined for this review were discarded because time-temperature history at the site of thermal damage assessment was not recorded. It is strongly recommended that future research on this subject include such data. Second, very little data is available examining chronic consequences of thermal exposure. On a related point, the time of assessment of damage after exposure is critically important for assessing whether damage is transient or permanent. Additionally, virtually no data are available for repeated thermal exposures which may occur in certain recreational or occupational activities. For purposes of regulatory guidelines, both acute and lasting effects of thermal damage should be considered.
Daniel Carneiro Carrettiero, Fernando Enrique Santiago, Anna Carolina Parracho Motzko-Soares, and Maria Camila Almeida Temperature (Austin). 2015 Oct-Dec; 2(4): 491–498. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843920/
ABSTRACT:
Alzheimer's disease (AD), the most common dementia in the elderly, is characterized by cognitive impairment and severe autonomic symptoms such as disturbance in core body temperature (Tc), which may be predictors or early events in AD onset. Inclusions of phosphorylated Tau (p-Tau) are a hallmark of AD and other neurodegenerative disorders called “Tauopathies.” Animal and human studies show that anesthesia augments p-Tau levels through reduction of Tc, with implications for AD. Additionally, hypothermia impairs memory and cognitive function. The molecular networks related to Tc that are associated with AD remain poorly characterized. Under physiological conditions, Tau binds microtubules, promoting their assembly and stability. The dynamically regulated Tau-microtubule interaction plays an important role in structural remodeling of the cytoskeleton, having important functions in neuronal plasticity and memory in the hippocampus. Hypothermia-induced increases in p-Tau levels are significant, with an 80% increase for each degree Celsius below normothermic conditions. Although the effects of temperature on Tau phosphorylation are evident, its effects on p-Tau degradation remain poorly understoodWe review information concerning the mechanisms of Tau regulation of neuron plasticity via its effects on microtubule dynamics, with focus on pathways regulating the abundance of phosphorylated Tau species. We highlight the effects of temperature on molecular mechanisms influencing the development of Tau-related diseases. Specifically, we argue that cold might preferentially affects central nervous system structures that are highly reliant upon plasticity, such as the hippocampus, and that the effect of cold on Tau phosphorylation may constitute a pathology-initiating trigger leading to neurodegeneration.